```
-Digital Synthesis Final Project-
                Joseph Weidinger
<CsoundSynthesizer>
<CsInstruments>
     =
         44100
sr
         4410
kr
    =
ksmps = 10
nchnls =
; some reverb
qarvbsiq init 0
INSTRUMENT 1 - WIND
instr 1
koscil oscil .4, .1, 1 ; controls kbeta (noise opcode's
integrated filter) ; this is my attempt to use an oscil as an
envelope, it keeps the wind from becoming static. It's regular
in pattern, but so slow it is hard to identify.
kdynamic linseg 400, 100, 400, 5, .001, 14, .001, 6, 400, 45,
400, 5, .001; this allows me to customize the dynamics of the
wind throughout the piece, with simple linear hairpins
anoise noise kdynamic, koscil
          100, .07, 1 ; controls the pitch of the filter,
kpitch oscil
I wanted the cps to not be easily divisible or else there would
be some pattern, using .1 and .07 gives many variations between
the pitch and dynamics of the filters
ares reson anoise, 600+kpitch, 100
aoutput balance ares, anoise
outs aoutput, aoutput
garvbsig = garvbsig+(aoutput*.15)
endin
```

```
; INSTRUMENT 2 - FILTER SWEEPS
instr 2
kdynamics linseg p4, .2, p4*20, 1, p4*5, 6, p4/2
kpitch linseg p5, p6, p7
kband expseg p8, p9, p10; defines clarity of pitch
anoise noise kdynamics, 0
ares reson anoise, kpitch, kband
aoutput balance ares, anoise
outs aoutput, aoutput
garvbsig = garvbsig+(aoutput*.15) ;smoothes out sound
endin
INSTRUMENT 3 - DESERTED (2 branch)
instr 3
ipitch = cpspch(p4)
; 1 - bell - attack
;==========
kbellstrike expon p5, 4, .0001
abell oscili kbellstrike, ipitch*2, 1 ;simple sine wave + 8va
;==========
; 2 - wind - decay
p3, .9 ; line envelope that affects
kenv line
           -.9,
filter (kbeta)
anoise noise p5, kenv
kfadetowind linseg 1, 3, 1, (p3-3), 100 ; makes pitch less
discriminate after 3s
ares reson anoise, ipitch, kfadetowind
aoutput balance ares, anoise
areduction = aoutput*.06 ;make sure there are no samples out
of range
a1 = areduction+abell
outs al, al
garvbsig = garvbsig + (a1 * .15)
endin
```

```
INSTRUMENT 5 - PLUCK
instr 5
ipitch = cpspch(p5)
a1 pluck p4*20000, ipitch, ipitch, 1, 5, .5, p6 ; weighting
average method of decay, parameters affecting length of note
outs a1, a1
garvbsig = (garvbsig + (a1*.15)*p7)
endin
INSTRUMENT 6 - CELESTIAL COLLISION
instr 6
kenvtest
          expon .99, 5, .2
khairpin
          linseg p4, p6, p7, p8, p9, p10, p11, p12, p13,
p14, p15
imode =
          4
            ;1-16? different types of waves
      = .5; for modes 2/4 between .01 - .99, pulse width
ikpw
         .5 ; oscillator phase .01-.00
ikphs
         .5 ; default .5, bandwidth of waveform, between 0
inyx
and .5
ipitch =
          cpspch (p5)
asound vco2 khairpin, ipitch, imode, kenvtest, .5, .5
outs asound*.6, asound*.6
endin
; INSTRUMENT 7 - LEAD VOX
instr 7
kenvtest
          linseg .01, .4, .6, .4, .8, .4, .9, .4, .95, .4,
.97 ; designed to imitate some logarithmic function because kpw
is sensative .9-.99
ipitch = cpspch(p5)
ipitch2 =
          cpspch (p6)
kgliss expseg ipitch2, p7, ipitch, (p2-3), ipitch
          linseg .01, p8, p4, p9, p4, p10, .01
asound vco2 khairpin, kgliss, 4, kenvtest, .5
outs
     asound, asound
garvbsig = garvbsig+(asound*.15)
```

endin

```
INSTRUMENT 8 - I THINK... THE WORLD IS GONNA END...
instr 8
kmodulatingfreq expseg .001, 10, .001, 20, 1, p3-20, 1; I use
this to bring the sound in, a very low modulating factor means
very small, mellow sound
kcarrierfreq
              expseg .2, 33, .2, 15, 1; this next event has
a siren effect that slowly changes the factor involved with
producing the carrier frequency (I chose to let it keep running
afterwards)
krandbandwidth expseg 5, 48, 5, 20, 20000, 5, 1; this next
event gradually increases the randomness of pitches. For the
first 48 seconds, there is a very narrow bandwidth in pitch
selection (5+/-), by the end, there is a huge range. The last
5 seconds narrows the bandwidth so that a pitch can be heard
and is not just white noise. Of course this is not a single
pitch because it is changing by this time 1000 times per
second!
krandfreqchange linseg 5, 48, 5, 20, 1000, 5, 1000 ; this is
similar to the last one but controls the rate at which these
random pitches happen
kpitch expseg 749, 68, 749, 5, 20000; this even along with
the hairpin under takes the pitch to the limits of our
hearing... literally
                 .001, 10, 3000, 58, 3000, 5, 6000 ; the
kdynamics expseg
last even simply makes a cresc. hairpin towards the end
krandom randi krandbandwidth, krandfregchange
asig foscili kdynamics, krandom+kpitch, kcarrierfreq,
kmodulatingfreg, 6, 1
    outs asig, asig
    garvbsig = garvbsig+(asig*.15)
endin
; GLOBAL REVERB - from Blue Cube
instr 99
al reverb2 garvbsig, p4, p5
   outs a1, a1
   garvbsig = 0
   endin
```

</csInstruments> <CsScore>

```
f1
    0
         32768
                   10
                        1
f2
         1024
    0
                   10
                        0
                            1
                                 0.3 0
                                           0.15
f3 0
         512 7
                   1
                        17
                            1
                                 0
                                      0
                                           495
f10 0
         65
              7
                   0
                        64
                            1
f11 0
         65
              5
                   0.01
                             64
                                 1
f12 0
              7
                                 32
         65
                   0
                        32
                            1
                                      0
f13 0
         65
              5
                   0.01
                                      32
                            32
                                 1
                                           0.01
i1
              180
    0
i2
    0
              10
                   700 10000
                                 . 2
                                      1000
                                                500 7
                                                         1000
i2
                   300 20
                                                500 7
    2
              10
                                      1000
                                                         1000
                                 1
                   300 20
i2
    2.6
                                      2000
                                                500 7
                                                         1000
              10
                                 1
                                 . 2
i2
    5
              10
                   225 500
                                      100
                                                500 7
                                                         1000
i2
    8
              10
                   325 .001
                                 7
                                      10000
                                                500 7
                                                         1
i3
    27
                   8.09
                            3000
              10
i3
    27
                   9.01
                            3000
              10
i3
    33
              10
                   9.00
                            3000
i3
    33
              10
                   9.04
                            3000
i3
    157
              10
                   8.09
                            3000
i3
    157
              10
                   9.01
                            3000
i3
    163
              10
                   9.00
                            1000
i3
    163
              10
                   9.04
                            1000
i5
    116 0.17
                   0.1 7.04
                                 0.1
                                           . 3
i5
         0.34
                        7.11
                                 <
    +
                   <
                                           <
i5
         0.17
                        7.04
                                 <
                                           <
    +
                   <
i5
         0.34
                       7.11
                                 <
                                           <
                   <
i5
    +
         0.17
                   <
                       7.04
                                 <
                                           <
i5
         0.34
                   <
                       7.11
                                 <
                                           <
    +
i5
         0.17
                   <
                        7.04
                                 <
                                           <
    +
i5
         0.34
                        7.11
                                           <
    +
                   <
                                 <
i5
         0.17
                   0.3 7.04
                                           1
    +
                                 <
i5
    +
         0.34
                   <
                       7.11
                                 <
i5
         0.17
                        7.04
                   <
                                 <
i5
    +
         0.34
                   <
                       7.11
                                 <
i5
         0.17
                        7.04
    +
                   <
                                 <
i5
    +
         0.34
                   <
                        7.11
                                 <
```

```
i5 +
       0.17
                7.04
                         0.4
              <
i5
   +
       0.34
              <
                 7.11
       0.17
i5
              <
                 7.04
i5
       0.34
                 7.11
   +
              <
i5
      0.17
                 7.04
   +
              <
i5
   +
      0.34
              <
                 7.11
i5
      0.17
              <
                 7.04
i5
      0.34
                 7.11
              <
i5
      0.17
                 7.04
              <
i5
      0.34
              <
                 7.11
i5
      0.17
                 7.04
   +
              <
i5
   +
      0.34
              <
                 7.11
i5
      0.17
              <
                 7.04
   +
i5 +
                 7.11
      0.34
              <
i5 + 0.17
              <
                 7.04
i5 + 0.34
                 7.11
              0
i6 114 40 10000
                 4.04
                                .001 4 .001
                                                 3
       20 4000
                 9 .001
4000
i6
   114 40 10000
                 5.04 4
                                .001
                                      4
                                          .001
                                                 3
4000
       20 4000
                 9 .001
          2000 5.00 3
i6 114 30
                                8000 4
                                          8000
                                                 3
.001
;9 is sustain value and p10 is decay, p9 = p3-p8-p10 (couldn't
get to work in instruments)
;p1 p2 p3 p4
                                      p9 p10
                 p5
                        p6
                               p7 p8
i7
   128 6 4000
                 8.09
                        8.05
                                1
                                   2
                                       3
                                          1
i7
   133 5
          4000
                 8.08
                         8.09
                                1
                                   2
                                       2
                                          1
          4000 10.06
3000 10.08
i7
   137 10 4000
                        8.08
                                1
                                   2
                                      7
                                          .01
                               1 2
                                      5
i7
   139 8
                        10.06
                                          .01
i8
   40 73
i99 0
       300 6 .2
е
</CsScore>
</CsoundSynthesizer>
```